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Using reference hypernetted chain(RHNC) integral equations and density functional theory in the modified
mean-field(MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres.
The two species(A andB) differ only in their dipole momentsmA andmB, and the central question investigated
is under which conditions these asymmetric mixtures can exhibitdemixingphase transitions in the fluid phase
regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC(which we
apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small
interaction parametersG=mB

2 /mA
2. This result generalizes previously reported observations on demixing in

mixtures of dipolar and neutral hard spheressG=0d to the case of true dipolar hard sphere mixtures. The RHNC
approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory,
whereas isotropic-to-ferroelectric transitions occur only at largerG. The MMF theory, on the other hand, yields
a different picture in which demixing occursin combinationwith spontaneous ferroelectricity at allG consid-
ered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions
in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small,
asymmetric amounts of van der Waals–like interactions(and thereby supporting the systems tendency to
demix) one finally reaches good agreement between MMF and RHNC results.
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I. INTRODUCTION

Phase transitions in fluids are very sensitive to the nature
of intermolecular interactions, and this is particularly true for
fluids involving permanent molecular dipole moments. In
fact, recent theoretical research has shown that even most
simple dipolar model fluids can display new and unexpected
phase behavior, such as spontaneous polarization in dense
liquid states[1–4] and self-assembly of the particles into
chains with head-to-tail aligned dipoles in the dilute gas
[5–8]. Chain formation is particularly pronounced in dipolar
fluids without additional dispersive interactions, such as di-
polar hard spheres(DHS’s) [6–8], whereconventionalgas-
liquid coexistence(which has been expected since the angle-
averaged dipolar interaction between two particles is
attractive) is indeed absent[9]. Against this background it
seems somewhat counterintuitive that mixtures of DHS’s and
neutral hard spheres(HS’s) have been shown[10–12] to ex-
hibit conventionaldemixingphase transitions, indicating that
the effect of dipolar forces in mixtures may be very different
from that in pure fluids.

In the present study we are concerned with the appearance
of demixing phase transitions in binary mixtures of DHS
with the two speciesA andB differing only in the magnitude
of the dipole momentsmA andmB (i.e., the size of particles is
the same in each component). Though not particulary realis-
tic as a model for polar molecular mixtures, binary DHS
fluids do have relevance for ferrocolloids which are com-
monly characterized by a nonuniform distribution of dipole

moments[13]. Moreover, the present model, of which the
DHS-HS mixture considered previously[10–12] is just a
limiting casesmB=0d, allows us to investigate directly the
influence of the anisotropic dipolar interactions on demixing
phenomena, contrary to most other studies of dipolar mix-
tures involving usually models with additional dispersive in-
teractions(see, e.g.,[14] and [15]). Indeed, given that pure
DHS fluids (or mixtures with mB=mA) polarize spontane-
ously at sufficiently large densities and coupling strengths, a
question of particular importance is not only whether true
mixtures withmBÞmA demix at all, but also whether they
demix already in theisotropic phase.

To address these topics we employ in this study two dif-
ferent theoretical approaches, that is reference hypernetted
chain (RHNC) integral equation theory and density func-
tional theory in the modified mean-field(MMF) approxima-
tion.

The RHNC theory is used to calculate approximate two-
particle correlation functions in the homogeneous isotropic
fluid phase. Combining this structural information with an
appropriate stability analysis we thenpredict the low-
temperature phase behavior on the basis of diverging fluctua-
tions. Their direction in the space of order parameters indi-
cates the character of the transition(e.g., isotropic-to-
ferroelectric and/or demixing transitions). Previous
applications of this approach have shown that the phase be-
havior of DHS fluids observed in computer simulations is
correctly predicted[16–18], including the existence of iso-
tropic demixing transitions in DHS-HS mixtures[11,12].
One may therefore expect reasonable results for true binary
DHS fluids as well. We note that, at least for the isotropic
phases, it is in principle possible to analyze the phase behav-
ior directly on the basis of RHNC phase coexistence curves
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following from the RHNC chemical potentials and pressure
[19]. These calculations, however, would imply a substantial
additional effort. In the present study we are interested
mainly in the qualitative phase behavior rather than in the
actual location of phase coexistence curves.

Within the MMF approach, on the other hand, phase dia-
grams are determined more directly by minimizing a free
energy functional, where two-particle correlations are ap-
proximated by the Boltzmann factor[20–22]. In a previous
paper[23] we have presented a detailed investigation of the
global MMF phase behavior(within the fluid range) of DHS
mixtures. Here we focus on comparison of the results to
those from the RHNC stability analysis. Indeed, while the
main advantage of the MMF is that both isotropic and polar-
ized phases can be easily included, interparticle correlations
are handled on a much simpler level than in the integral
equation theory. Comparison of the two approaches therefore
provides useful insight concerning the importance of corre-
lational effects for the phase behavior. Indeed, our results
suggest thatisotropic DHS mixtures can demix(under ap-
propriate thermodynamic conditions), but that these demix-
ing transitions are rather subtle phenomena in that they dis-
appear within the MMF approach.

The rest of the paper is organized as follows. In Sec. II we
formulate the model and present main expressions of the two
theoretical approaches employed, including an explicit ex-
pression(plus derivation in the Appendix) for the dielectric
constant of the dipolar mixture. Numerical results obtained
within the RHNC and MMF theories are presented in Secs.
III A and III B, respectively. It turns out that the predictions
differ qualitatively when strongly asymmetric DHS mixtures
are considered. Therefore, we finally discuss systems with
additional spherically symmetric interactions, for which the
RHNC and MMF approaches become roughly consistent
again. Our conclusions are summarized in Sec. IV.

II. THEORY

A. Model

We consider binary mixtures of two species(A andB) of
dipolar hard spheres with equal diameterss but different
dipole momentsmA andmB. In addition to the dipole-dipole
interaction a Lennard-Jones(LJ) interaction between the
spheres may be present as well. The resulting pair potential
between two particles with coordinatess1d=sr 1,v1d and
s2d=sr 2,v2d is given as

uabs12d = H`, r12 , s,

uab
dipsr 12,v1,v2d + uab

LJsr12d, r12 . s,
s2.1d

where r12= ur 12u= ur 2−r 1u is the particle separation,v
=su ,fd represents the orientation of a dipole in a spatially
fixed coordinate system, and the subscriptsa and b denote
the components consideredfa,b=A,Bg. The dipolar poten-
tial is given by

uab
dipsr 12,v1,v2d =

mamb

r12
3 hm̂sv1d · m̂sv2d − 3fm̂sv1d · r̂ 12g

3fm̂sv2d · r̂ 12gj, s2.2d

wherem̂svd andr̂ 12 are unit vectors in the direction ofv and
r 12, respectively. Finally,

uab
LJsr12d = 4eabFS s

r12
D12

− S s

r12
D6G s2.3d

is the LJ potential. Settingeab=0 the pair potential(2.1)
reduces to that of DHS mixtures. For finite attraction param-
eterseab the present model is a slightly modified version of a
Stockmayer fluid mixture(see, e.g., Ref.[14]); the additional
hard core has been introduced for numerical convenience.

B. RHNC stability analysis

A main concern of the present work is the mixtures phase
behavior at large(but still fluidlike) total densitiesr=rA
+rB (with ra=Na/V). Based on previous studies of two lim-
iting cases—that is, mixtures with only one dipolar compo-
nent smB=0d [10–12], on the one hand, and one-component
dipolar fluidssrB→0d [1–4], on the other hand—one would
expect these systems, upon cooling from a mixed isotropic
high-temperature phase, to eitherdemixor spontaneously po-
larize or exhibit a combination of these phase transitions.
Condensation transitions seem also possible, especially when
systems with isotropic interactions are considered(i.e.,
eab.0) [14]. In order to properly characterize the phase
behavior based on information of the isotropic high-
temperature state(which can be treated by standard integral
equation techniques[24]), we apply a stability analysis de-
veloped by Chen and Forstmann[11,12]. Contrary to other
frameworks such as Kirkwood-Buff theory[25], the general
analysis of Chen and Forstmann gives us a rigorous criterion
on which we can decide whether it is demixing or conden-
sation or an orientational instability which dominates the
phase behavior.

The central idea is to consider the changedV=V−Veq of
the grand canonical free energy induced by density fluctua-
tions dras1d around the homogeneous and isotropic equilib-
rium state, characterized by constant singlet densitiesras1d
=ra/4p. Up to second order,dV is given by

dV <
1

2o
ab
E d1E d2dras1dU d2V

dras1ddrbs2d
U

eq
drbs2d

=
kBT

2 o
ab
E d1E d2dras1dFdabds12d

ra/4p
− cabs12dGdrbs2d,

s2.4d

wherekB is Boltzmann’s constant,T is the temperature,dab is
the Kronecker delta, andcabs12d is the direct correlation
function at equilibrium. For each(small) fluctuation, the cor-
responding value ofdV determines the “restoring force.”
Stability (or metastability) therefore implies thatdV is posi-
tive for fluctuations with arbitrary directions in density space.

Expression(2.4) can be simplified by introducing Fourier
transforms of the density fluctuations and correlation func-
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tions, respectively, and expanding these quantities along
angle-dependent basis functions[12]. Choosing the wave
vectork along the polar axis(“k frame”), the density expan-
sion readsdr̃ask ,v1d=ol1,x dra

l1,xskdYl1,xsv1d, where k= uk u
and theYl1,xsv1d are spherical harmonics. Furthermore, one
has c̃absk ,v1,v2d=ol1l2

ox c̃ab
l1l2,xskdCl1l2,xsv1,v2d, where

−minsl1, l2døxøminsl1, l2d and theCl1l2,x are rotational in-
variants defined in Appendix 3B of Ref.[24]. Equation(2.4)
then transforms to

dV =
2pkBT

V o
k

o
x

o
i j

dr̄i,x
* skdfM xskdgi jdr̄ j ,xskd, s2.5d

where we have introduced the combinations of indicesi
=sa, l1d and j =sb, l2d, and the fluctuations dr̄i,xskd
=dra

l1,xskd /Îra. Furthermore, the elements of the matrices
M xskd are defined as

fM xskdgi j = di j − s− 1dxÎ rarb

s2l1 + 1ds2l2 + 1d
c̃ab

l1l2,xskd.

s2.6d

Due to symmetries of the coefficientsc̃ab
l1l2,xskd, the matrices

M xskd are real and symmetric andM xskd=M −xskd.
The structure of Eq.(2.5) implies that fluctuations with

different wave numbersk and angular indicesx are decou-
pled. Stability therefore requiresall matricesM xskd to be
positive definite, which can be easily checked by an investi-
gation of the eigenvalues. In the stable(or metastable) sys-
tem all eigenvalues are positive. Phase transitions are indi-
cated by an eigenvalue going to zero(upon decreasingT, for
example), reflecting that there is a direction in density space
along which the restoring force for fluctuations becomes par-
ticularly small. Identifying that eigenvalue and monitoring
the related direction in density space we can thus predict the
character of the phase transition under consideration.

Practically, the direct correlation functions determining
M xskd are calculated via numerical solution of the Ornstein-
Zernike equations[12,26] for the isotropic fluid mixture
combined with the reference hypernetted chain closure ap-
proximation(involving Verlet-Weis[27] hard sphere correla-
tion functions). The details of these calculations can be found
elsewhere(see, e.g., Refs.[28,16]). Here we note that our
numerical solution scheme implies a truncation of the expan-
sion of c̃s1,2d at l1

max= l2
max=2 and thereforeuxumax=2. The

matricesM 0skd, M ±1skd, and M ±2skd then have dimensions
636, 434, and 232, respectively.

1. Most important instabilities

Since we are mainly interested in demixing or condensa-
tion and in isotropic-to-ferroelectric transitions, long-
wavelengthsk→0d fluctuations of the number densities(an-
gular indicesl i =x=0) and the polarizations(l i =1, x=0, ±1)
are particularly important. We can discuss these fluctuations
separately from each other(and from other fluctuations),
since the matricesM 0s0d andM ±1s0d have block form with
respect to the indicesl i.

For number density fluctuations we therefore consider the
232 submatrixD0 of M 0s0d with elements

fD0gab = dab − Îrarb c̃ab
00,0s0d. s2.7d

A vanishing of the smaller eigenvaluelD of D0 indicates
demixing or condensation of the system. This can be clari-
fied by investigating the direction of the eigenvector related
to lD in the two-dimensional space spanned byfdrg1

=drA
0,0s0d /ÎrA and fdrg2=drB

0,0s0d /ÎrB. Purecondensation
occurs if the eigenvector lies along directionxr=sÎrA,ÎrBd,
since the projection

dr ·xr = drA
0,0s0d + drB

0,0s0d = dr s2.8d

corresponds to a fluctuation of thetotal number density. On
the other hand, pure demixing(with fixed total density) is
indicated by an eigenvector along directionxc=r−2sÎrA rB

−ÎrB rAd'xr, since

dr ·xc = ÎrB drA
0,0s0d − ÎrA drB

0,0s0d = dc s2.9d

is a pure concentration fluctuation. By monitoring the angle
a between the eigenvector and, say,xc we can thus predict
the type of transition the system approaches.

We now turn to polarization fluctuations related to the 2
32 submatricesF0 and F1 of M 0s0d and M ±1s0d with ele-
ments

fF0gab = dab −
Îrarb

3
c̃ab

11,0s0d,

fF1gab = dab +
Îrarb

3
c̃ab

11,1s0d. s2.10d

Ferroelectric transitions of the mixture are indicated when
the smaller eigenvaluelF of F1 goes to zero. To see this we
consider the physical precursor of ferroelectric order—that
is, the mixture’s dielectric constante. This quantity is related
to matrices(2.10) by

e =
detF0

detF1
, s2.11d

where “det” denotes the determinant. A derivation of Eq.
(2.11) can be found in the Appendix. Numerical investigation
shows that detF0 remains finite at all states considered.
Therefore, a vanishing of the smaller eigenvaluelF of F1 can
be uniquely related to a divergence of the dielectric constant,

e → ` ⇔ lF → 0, s2.12d

which indicates an isotropic-to-ferroelectric transition. The
direction of the eigenvector related tolF indicates which
component “drives” the transition; usually this will be the
component with stronger dipolar interactions.

C. Modified mean-field density functional theory

As a supplement of the RHNC stability analysis, which is
based on the homogeneous isotropic phase and thus yields
only indirect information on the overall phase behavior, we
also perform modified mean-field density-functional calcula-
tions. The great advantage of this approach, which we have
decribed in detail in Ref.[23], is that ferroelectric phases(as
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long as they are spatially homogeneous) can be easily in-
cluded. We thus consider fluid states with singlet densities

rasr 1,v1d =
ra

2p
āascosud =

ra

2p
S1

2
+ o

l=1

`

aa,l PlscosudD ,

s2.13d

where āascosud is a normalized orientational distribution
function fe−1

1 dxāasxd=1g, andu is the angle relative to the
director of the orientational order(if present). Consequently,
we can expand the distribution in Legendre polynomialsPl
[see second line in Eq.(2.13)], where the coefficientsaa,l are
connected to the usuallth-rank order parametersPa,l via

Pa,l =E
−1

1

dxāasxdPlsxd =
2

2l + 1
aa,l . s2.14d

The isotropic phase is specified byPa,lù1=0—i.e., āasxd
=1/2—whereas a ferroelectric phase is characterized by
Pa,l Þ0 for all l.

Employing Eq.(2.13), the grand canonical density func-
tional V of the mixture is given by[23]

V

V = o
a

ra

b
flnsraLa

3d − 1g+ o
a

ra

b
E

−1

1

dxāasxdlnf2āasxdg

+
r

b

4h − 3h2

s1 − hd2 +
Fex

V − o
a

mara, s2.15d

where the first two terms on the right-hand side of Eq.(2.15)
correspond to the ideal(translational and orientational) part
of the free energy, and the third term is the Carnahan-
Starling expression[29] for the hard sphere reference system
(with packing fractionh=prs3/6). Furthermore,Fex is the
excess free energy(see below), and the last term in Eq.
(2.15) contains the chemical potentialsma controlling the
composition of the mixture.

The MMF approximation[20,30] consists in setting the
pair distribution functiongabs12d involved in theexactex-
pression forFex equal to its low density limit—i.e.,gabs12d
→expf−buabs12dg. The implementation of this approxima-
tion into the density functional is described in detail in Ref.
[23], and essentially the same derivations can also be used
for the present system(which differs from that considered
previously[23] only by the presence of additional LJ inter-
actions). As a result, the excess free energy reduces to a
quadratic form in the densities and order parameters,

Fex

V = o
ab

rarbo
l=0

`

uab,l aa,l ab,l , s2.16d

whereaa,0=1/2 and thecoupling parameters are given as a
power series in terms of the dipole moments—that is,

uab,l = o
n=0

`

uab,l
snd smambdn. s2.17d

For nÞ1, the temperature-dependent coefficientsuab,l
snd ap-

pearing in Eq.(2.17) are defined by

uab,l
snd = −

1

2b

1

4p2n!
s− bdnIab

snd E dv1 dv2 dv12 Plscosu1d

3Plscosu2dF̃112
n sv1,v2,v12d, s2.18d

where theIab
snd are (short-range) spatial integrals,

Iab
snd =E

s

`

dr12
1

r12
3n−2hexpf− buab

LJsr12dg − dn0j, s2.19d

which can be easily evaluated by standard numerical integra-
tion techniques. Furthermore, the angular integrals in Eq.
(2.18) can be solved by expressing both the Legendre poly-

nomials and the quantitiesF̃112
n [where F̃112=m̂1·m̂2

−3sm̂1·r̂ 12dsm̂2·r̂ 12d] by spherical harmonics as described in
Ref. [23].

Finally, the coefficient corresponding ton=1 in Eq.(2.17)
is related to an integral over the long-range dipolar potential
itself and therefore requires special treatment. One finally
obtains(see Ref.[23] and references therein)

uab,l
s1d = −

8p

27
dl,1. s2.20d

In practice, we truncate the Taylor expansion appearing in
Eq. (2.17) at nmax=4. Explicit expressions for the resulting
set(l ,nø4) of coefficientsuab,l

snd [after performing the angular
integrals in Eq.(2.18)] are given in Table I. Inserting Eqs.
(2.17) and (2.16) into Eq. (2.15) completes our construction
of the MMF density functional. In order to identify the set of
ten parametersshra,aa,1, . . . ,aa,4jd characterizing the equi-
librium state at givensma,T,Vd, we solve the Euler-Lagrange
equations

TABLE I. The coefficientsuab,l
snd [see Eq.(2.18)] for l ,nø4. The quantitiesIab

snd follow from numerical
integration of Eq.(2.19).

n=0 n=1 n=2 n=3 n=4

l =0 −s8p /bdIab
s0d 0 −s8pb /3dIab

s0d 0 −s8pb3/25dIab
s4d

l =1 0 −s8p/27d 0 −s16pb2/225dIab
s3d 0

l =2 0 0 −s8pb/375dIab
s2d 0 −s32pb3/6125dIab

s4d

l =3 0 0 0 s16pb2/25725dIab
s3d 0

l =4 0 0 0 0 −s8pb3/99225dIab
s4d
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] sV/Vd
] ra

= 0,
dsV/Vd

dāasxd
= 0. s2.21d

This is done numerically by employing a multidimensional
Newton-Raphson algorithm. Moreover,coexisting statesat
given chemical potentialsmA andmB are identified by com-
bining Eqs.(2.21) with a further equation reflecting that the
pressuresp=−VeqsmA,mB,Td /V=−Vfra

eq,āa
eqsxdg /V of both

states have to be equal as well.

III. RESULTS AND DISCUSSION

A. RHNC stability analysis of DHS mixtures

Most of our RHNC results have been obtained for DHS
mixtures without additional LJ interactions[i.e., eab=0 in
Eq. (2.3)]. These systems can be characterized by the re-
duced temperatureT* =kBTs3/mA

2, the interaction parameter
G=mB

2 /mA
2 specifying the different dipolar couplings within

the two species, the reduced total densityr* =srA+rBds3,
and the concentration of theA component,cA=rA/r. All cal-
culations have been carried out at fixed total densityr*

=0.7. This value has already been considered in previous
RHNC integral equation[11,12] and Monte Carlo simulation
[10] studies for the limiting caseG=0, which corresponds to
a mixture where theB particles are just hard spheres. In the
present study we consider systems at seven different interac-
tion parameters in the range 0øGø1, whereG=1 is again a
special case in that the corresponding mixtures are essen-
tially one-component DHS fluids for all concentrations 0
øcAø1. We also note that the behavior of mixtures with
G.1 follows from the present systems by interchangingA
andB.

For eachG we have first determined the stability limits
(spinodals) of the mixed isotropic fluid phase—i.e., the tem-
peraturesTs

*scAd where one of the eigenvalues discussed in
Sec. II B 1 approaches zero upon loweringT* towardsTs

* .
Results are shown in Fig. 1. All of the lines approach the

same limiting value forcA→1, corresponding to the tem-
perature where pure isotropic DHS fluids become unstable
due to an isotropic-to-ferroelectric transition. This is illus-
trated in Fig. 2 where the behavior of the dielectric constant
uponT* →Ts

* is displayed for various values ofG, including
G=1 where the actual value ofcA is irrelevant. The appearant
divergence ofe at G=1 indicates formation of a low-
temperature fluid phase withspontaneouslong-range parallel
ordering of the dipole moments, and this prediction is con-
sistent with various computer simulation results[1–4]. A
comparison of the actual transition temperatures indicates
that RHNC theory overestimates the tendency for ferroelec-
tric ordering, but still yields the best theoretical results so far
[16].

Turning back to Fig. 1 we note that the ferroelectric in-
stability of the pure system reappears(except forG=0) on
the left-hand side of the diagrams(cA→0), since these sys-
tems are again one-component DHS fluids atr* =0.7 but
with dipole momentsmBømA and thereforeTs

*scA=0d
=G Ts

*scA=1døTs
*scA=1d. In the two subsequent paragraphs

we discuss in detail the behavior of truemixturesof DHS’s
with compositions in between the limiting casescA→0,1.

1. Mixtures with GÐ0.4

Typical for mixtures with relatively large interaction pa-
rameters 0.4øG,1 is that replacingA particles more and
more by B particles—i.e., decreasingcA from the limiting
value 1(pureA fluid), yields amonotonicdecrease ofTs

* as
illustrated in the inset of Fig. 1. Furthermore, when consid-
ering a fixed concentration—say,cA=0.2 (see Fig. 2)—the
dielectric constante continues to diverge as it does in the
pureA system, suggesting that the ferroelectric transition is
preserved. Further evidence for this behavior is seen in Fig. 3
where we have plotted the eigenvalueslF [see Eq.(2.12)]
and lD [see Eq.(2.7) below] as functions of the inverse
temperature for two differently composed mixtures at a rep-
resentative interaction ratiosG=0.8d. For both mixtures, the
fluctuations related tolD are found to be mainlyconcentra-
tion fluctuations; i.e., numerical values of the anglea be-

FIG. 1. Stability limits of binary DHS mixtures with interaction
ratios Gø0.4 andGù0.4 (inset) in the concentration-temperature
plane sT* =kBTs3/mA

2 ,cA=rA/rd. The total density is fixed atr*

=0.7.

FIG. 2. Dielectric constant as function of the inverse tempera-
ture for the pureA fluid and for mixtures atcA=0.2 and various
values ofG.
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tween the fluctuation vectordr and the direction of pure
concentration fluctuationsxc [see Eq.(2.8) below] are very
small. Comparing, however, the actual magnitude and tem-
perature dependence oflD in Fig. 3 to that oflF one con-
cludes that the concentration fluctuations have minor impor-
tance against those of the polarization, which diverge when
approachingTs

* (as indicated by the sudden decrease oflF).
Thus, the origin of the stabilitiy limits in Fig. 1(inset) is
indeed spontaneous polarization rather than a demixing
within the isotropic phase, even though the decrease oflD
suggests that the isotropic-to-ferroelectric transitions may be
accompanied by small changes in the composition of the
system. In fact, given that theA particles are more strongly
coupled one would actually expect the low-temperature
ferroelectric phase to be characterized by somewhat higher
values of cA (and, also,r). Finally, having identified the
ferroelectric character of the stability limits in Fig. 1(inset) it
is plausible that the stability limit of the isotropic phase in-
deed decreases(for a fixedG) whenA particles are replaced
by (less strongly coupled) B particles.

2. Mixtures with GÏ0.4

Mixtures with more asymmetric dipolar couplings exhibit
a different physical behavior as indicated already by the
shapeof the spinodals displayed in the main part of Fig. 1:
upon decreasingcA from 1 the temperaturesTs

* first rise and
start to decrease only at some(G-dependent) small value of
the concentration ofA particles. Also, as seen from Fig. 2,
the dielectric constant at small concentrationscA remains
small for all temperatures considered, suggesting that the sta-
bility limit of these systems is not(at least not primarily)
related to a ferroelectric transition. In order to get a clearer
picture we investigate again the eigenvalueslF andlD, tak-
ing now the caseG=0.2 as an example. In Fig. 4 the eigen-
values are plotted for two different concentrations, the
smaller of which is in the range where the stability limit goes
through the maximum. The corresponding results[see Fig.
4(a)] clearly show that it is nowlD which goes to zero sig-
nificantly faster thanlF (contrary to what we have seen be-
fore). Furthermore, the related anglea (see Table II for some

representative values) is close to zero, indicating that the
diverging fluctuations related tolD are essentially concentra-
tion (rather than total density) fluctuations. The smallnega-
tive values ofa merely suggest that the phase richer inA
particles will also be somewhat denser(which seems sensible
due to the stronger coupling within theA species). Figure
4(b) finally shows that the situation changes again at larger
cA in that polarization fluctuations become dominating for
T* →Ts

* . TheseA-rich systems thus transform directly into
ferroelectric phases as do the mixtures with largeG discussed
in Sec. III A 1.

Taken altogether, our results indicate that strongly asym-
metric DHS mixtures characterized byintermediatevalues of
cA may exhibit demixing phase transitionswithout simulta-
neous ferroelectric ordering(even though one would actually
expect the demixed fluid phases to undergo a second phase
transition of ferroelectric type at some lower temperatures).
It seems then obvious that the demixing tendency becomes
even more pronounced upon further decrease of the interac-
tion ratio. That this is indeed the case is demonstrated in
Figs. 5(a)–5(d) where we have plotted, for four different val-
ues of G, the values oflD and lF obtaineddirectly at the
stability limit. Compared toG=0.2 [cf. Fig. 5(c)], the range
of cA where lD is the smallest eigenvalue(thus indicating
demixing) significantly broadens whenG is decreased[see
Figs. 5(a) and 5(b)], the largest window occurring forG=0
corresponding to a mixture of DHS’s and pure hard spheres.
Representative results for the temperature behavior of the
eigenvalues atG=0 are displayed in the inset of Fig. 4. The
data clearly reveal the dominance of concentration fluctua-
tions over those of the polarization. We note that the case

FIG. 3. The eigenvalueslF (solid lines) andlD (dashed lines) as
functions of the inverse temperature atG=0.8 andcA=0.2 (a) and
cA=0.8 (b).

FIG. 4. The eigenvalueslF (solid lines) andlD (dashed lines) as
functions of the inverse temperature atG=0.2 andcA=0.2 (a) and
cA=0.8 (b). The inset of(a) shows results forcA=0.2 andG=0.

TABLE II. Numerical values of the anglea [see Eq.(2.9) be-
low] at the stability limit corresponding tocA=0.2 and different
values ofG. Pure concentration(total density) fluctuations corre-
spond toa=0°s90°d.

G=0.0 G=0.1 G=0.2 G=0.4

−2.11° −2.91° −3.62° −4.85°
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G=0 has also been investigated previously both by RHNC
integral equations[11,12] (with which studies our own re-
sults are consistent) and by Monte Carlo computer simula-
tions [10]. The latter have confirmed the occurrence of de-
mixing transitions, including that the resulting phases are
indeed isotropic as suggested by the theory. It seems thus
safe to assume that the RHNC stability analysis is also cor-
rect in predicting isotropic demixing transitions for true di-
polar mixtures with small, but finite values ofG.

B. MMF density functional results

Given the severe approximation for the interparticle cor-
relations within the MMF theory it is interesting to see to
which extent this approach reproduces the RHNC predictions
for the phase behavior, particularly in context with demixing
transitions. We focus on the caseG=0 (DHS-HS mixture)
where the tendency to demix into two isotropic phases is
largest. Also, apart from “hard core” systems without isotro-
pic attractions(i.e., eab=0 as in Sec. III A) we consider in
addition one example where theA component is a Stock-
mayer fluid as defined in Eq.(2.1).

From a technical point of view comparison between the
RHNC and MMF results is complicated by the fact that,
instead ofr* and cA, the reduced chemical potentialsma

*

=bma−lnsLa
3/s3d of the two species are the natural input for

the MMF calculations along with the temperatureT* . We
handle that point such that we first consider density-
temperature MMF phase diagrams of the fluid phase regime
obtained at fixed chemical potential differenceDm* ;mB

*

−mA
* . Based on these diagrams we then extract concentration-

temperature diagrams atfixed total density in order to make
contact with the RHNC results(see Fig. 1).

1. Mixtures without isotropic attraction

Density-temperature phase diagrams forG=0 andeab=0
are plotted in Fig. 6 where the different curves belong to
different values of the parameterDm* . In the limit Dm* →
−` one recovers the MMF phase diagram of the pureA fluid
containing only two fluid phases—that is, an isotropic gas
(IG) and a ferroelectric liquid(FL). Below the temperature

TTCP
* related to thetricritical point (TCP), the transition be-

tween the two phases is of first order both in density and in
the orientational order parametersaA,l.1. Above TTCP

* the
IG-FL transition becomes continuous. The resultingcritical
line separating the isotropic and ferroelectric phase can be
found from a Landau analysis as described in Refs.[20,23].

Starting from the pureA behavior, one apparent change
induced by increasingDm* is a shift of the isotropic-to-
ferroelectric transition. Indeed, when considering mixtures at
fixed total density(or fixed temperature) one finds from Fig.
6 that the IG-FL transition moves towards lower tempera-
tures (or higher densities) with increasingDm* . Since in-
crease ofDm* implies decreaseof the concentration ofA
particles the results in Fig. 6 also imply that, at fixed density,
the ferroelectric transition temperatures decrease with de-
creasingcA. This is seen more directly in Fig. 7 where the
transition temperatures atr* =0.7 are plotted as functions of

FIG. 5. EigenvalueslF (solid lines) andlD (dashed lines) at the
stability limits for G=0 (a), G=0.1 (b), G=0.2 (c), andG=0.4 (d).

FIG. 6. MMF density-temperature phase diagrams for DHS-HS
mixtures sG=0d at Dm* →−` (solid and dotted lines), Dm* =2.0
(dashed lines), andDm* =4.0 (dot-dashed lines). The abbreviations
are explained in the main text.

FIG. 7. MMF results for the temperatures related to the bound-
ary of the isotropic phase atr* =0.7 and various values ofG.
Dashed (solid) lines denote second-order(first-order) phase
transitions.
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the concentrationcA corresponding to differentDm* . The re-
sults indicate destabilization of ferroelectric ordering when
the dipolarA particles are replaced by hard sphereB par-
ticles.

A second change upon increasingDm* concerns theorder
of the IG-FL transition which, as seen from both Figs. 6 and
7, becomes discontinuous for all temperatures and densities
corresponding to the fluid phase regime. This concerns not
only density and polarization but also the concentrationcA
(not shown), the values of which in the coexisting IG and FL
phases are observed to become very different, particularly
for large Dm* (where the FL phase is dominated byA par-
ticles). We stress, however, that regardless of the value of
Dm* or r* considered, jumps incA are always accompanied
by spontaneous polarization. In other words, the MMF ap-
proach does not reproduce demixing phase transitionswithin
the isotropic phase observed both in the RHNC stability ana-
lyis (see Sec. III A and Refs.[11,12]) and in computer simu-
lations [10].

Given this discrepancy atG=0 where the mixtures ten-
dency to demix is largest anyway, it is not surprising to find
similar differences between the MMF and RHNC predictions
at finite interaction ratios(MMF results at finiteG have been
obtained by us previously in Ref.[23]). Some MMF results
for the boundaries of the isotropic high-temperature phase at
G.0 are included in thecA-T* diagram in Fig. 7(density
r* =0.7). For all cases considered the corresponding(first- or
second-order) phase transformations are isotropic-to-
ferroelectric transitions, with the transition temperature de-
creasing monotonically on decreasingcA. This is in contrast
to the RHNC spinodals(see Fig. 1) which, for sufficiently
small G, exhibit a maximum related to demixing transitions
without an accompanying isotropic-to-ferroelectric transi-
tion. One should also note, however, that MMF and RHNC
theories do give consistent results at largerG. This concerns
both the shape of the phase boundaries and their origin—that
is, spontaneous polarization—even though there are obvious
differences in the actual predictions for the ferroelectric tran-
sition temperatures. For example, atG=0.8, cA=0.2 the
ferroelectric transition temperature predicted by the RHNC is
approximately 4 times smaller than the corresponding MMF
result. On the other hand, both approaches predict the orien-
tationally ordered phase to be characterized by larger values
of cA andr* .

2. Influence of additional dispersive interactions

In view of the shortcomings of the MMF theory in pre-
dicting isotropic demixing transitions in strongly asymmetric
DHS mixtures we conclude this study by a brief discussion
of a system where dipolar interactions are supplemented by
weakLJ interactions. Specifically, we consider a mixture of
Stockmayer spheressAd and hard spheressBd characterized
by eBB=eAB=0 andeAAs3/mA

2 = :eAA
* =0.3. This value ofeAA

* ,
which reflects that the isotropic attraction betweenA par-
ticles is much smaller than their mutual dipolar interaction, is
quite realistic for a number of polar molecular fluids[31].
The resulting MMF density-temperaturesT* =kBTs3/mA

2d
phase diagram of thepure Afluid (or the mixture in the limit
Dm* →−`) is plotted in Fig. 8(a) from which one concludes

that the system, similarly to the pure DHS fluid(cf. Fig. 6)
doesnot display phase coexistence between an IG and an
isotropic liquid (IL ). This changes, of course, upon increas-
ing the attraction, and an example can be seen in Fig. 8(b)
where we present the phase diagram of the pureA fluid at
eAA

* =0.4 (CP denotes the IG-IL critical point). However,
since we are interested in dipole-dominated systems, we fo-
cus in the following on the caseeAA

* =0.3.
Corresponding mixture phase diagrams(finite Dm*) are

displayed in Fig. 9(a). It is seen that large, positive values of
Dm* yield a topology characterized by one first-order
isotropic-to-ferroelectric transition(see dashed lines), which
is again very similar to what one finds for corresponding
DHS-HS mixtures(cf. Fig. 6). A significant difference be-
tween Stockmayer and DHS-HS mixtures appears only at
intermediate values of the chemical potential difference(e.g.,
Dm* =1.8), where the additionalAA attraction generates a
critical point (CP) not present in the hard core systems. Its
nature becomes clear when we consider the corresponding
concentration-temperature diagram in Fig. 9(b), which shows
that the two phases coexisting below the critical temperature
differ mainly in cA rather than in total density. Moreover,
both of these phases areunpolarized, as seen more directly
from Fig. 10 where the behavior of the polarizationPA,1

FIG. 8. MMF density-temperature phase diagrams of puresAd
Stockmayer fluids characterized byeAA

* =0.3 (a) andeAA
* =0.4 (b).

FIG. 9. MMF phase diagrams of Stockmayer/HS mixtures(G
=0, eAA

* =0.3). (a) Density-temperature diagrams atDm* =1.8 (solid
lines) and Dm* =3.0 (dashed lines). (b) Concentration-temperature
diagram atDm* =1.8.
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=s2/3daA,1 upon crossing the phase boundaries is plotted at a
temperature in between the critical and the triple point IG-
IL-FL. The two (lower-density) phases coexisting below the
critical temperature are therefore aB-rich isotropic gas and
an A-rich isotropic liquid, and we conclude that the critical
point not displayed by the hard core systems is a demixing
critical point within the isotropic phase.

The different phase behavior of Stockmayer/HS and
DHS-HS mixtures within the MMF theory is also reflected
by the different shapes of the phase boundary in thecA-T*

diagram atfixed density r* =0.7. Results for Stockmayer
systems withG=0 and various finite interaction ratios(where
the attraction parameterseab have been chosen in proportion
to the dipolar interactions) are plotted in Fig. 11(see Fig. 7
for corresponding DHS results). Focusing onG=0 one ob-
serves amaximumin the phase boundary, which is in con-
trast to the monotoniccA dependence of the transition tem-

peratures for corresponding DHS-HS mixtures(cf. Fig. 7).
The latter display only isotropic-to-ferroelectric transitions.
Therefore, the maximum itself can be related to the occur-
rence of demixing without simultaneous polarization. From
the same perspective, the absence of maxima at finiteG in
Fig. 11 suggests that these true Stockmayer mixtures trans-
form directly into a polarized phase, as do the corresponding
DHS mixtures within the MMF theory.

Finally, turning back to the caseG=0 (Stockmayer/HS
mixture) it seems worthwhile to briefly compare our MMF
results for the isotropic demixing transition to corresponding
results from the RHNC theory. The latter predicts demixing
to occur already in the absence of any dispersive interactions
(cf. Sec. III A). The effect of adding such interactions(i.e.,
increasingeAA

* from zero) on the RHNC stability limits at
r* =0.7 is illustrated in Fig. 12. For all positive values ofeAA

*

investigated, concentration fluctuations are found to domi-
nate in the whole range of compositions except in the imme-
diate vicinity of cA=1,0. Therefore, the maxima in the sta-
bility limits can indeed be related to true demixing
transitions, and the shift of the curves indicates that attractive
forces betweenA particles significantly raise the demixing
temperatures. This is indeed plausible since increasingeAA
implies that the interactions become more and more asym-
metric and, consequently, demixing becomes more and more
supported. A somewhat unexpected phenomenon is the ap-
pearance of a “notch” in the curves atcA<0.55, but this may
be understood such that the tendency for demixing is some-
what less pronounced in mixtures with fairly symmetric
composition(note that we are considering stability limits and
not true coexistence curves where such notches would indi-
cate the appearance of a triple point). Finally, focusing on the
caseeAA

* =0.3 one sees that the RHNC results for the stability
limit are, in fact, quite close to the boundary temperatures
resulting from the MMF density-functional theory(see
dashed line in Fig. 12). For these systems, results from the
two approaches are therefore in fair agreement not only
qualitatively, but also from a quantitative point of view.

FIG. 10. Polarization and concentrations ofA particles as func-
tions of the chemical potential atDm* =1.8 andT* =0.85 (G=0,
eAA

* =0.3).

FIG. 11. MMF results for the temperatures related to the bound-
ary of the isotropic phase for Stockmayer mixtures atr* =0.7 and
various values ofG. The reduced LJ parameters(eab

* : =eabs
3/mA

2)
are chosen aseAA

* =0.3, eBB
* =0.3 G, andeAB

* =eBA
* =0.3 ÎG. Dashed

(solid) lines denote second-order(first-order) phase transitions.

FIG. 12. RHNC results(solid lines) for the stability limits of
Stockmayer/HS mixtures(G=0) at r* =0.7 and various values of
eAA

* . Also shown(dashed line) is the MMF result for the boundary
of the isotropic phase atr* =0.7 andeAA

* =0.3.
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IV. CONCLUSIONS

In this work we have employed RHNC integral equations
and a mean-field-like density functional approach in order to
investigate the appearance of demixing transitions in binary
fluid mixtures of equisized dipolar spheres, where the two
species differ only in the strength of the(point) dipole mo-
ment. Most of our results have been obtained for DHS sys-
tems characterized by the absence of any spherically sym-
metric attractive interactions. Thus, if any, it is the
anisotropic dipolar interaction between the particles which
can generate demixing transitions. Moreover, since pure
DHS fluids tend to order ferroelectrically at sufficiently large
densities and coupling strengths, a question of special impor-
tance was whether dense DHSmixturescan demix within the
isotropic phase.

In order to solve that question within the RHNC approach
we have applied a stability analysis based on the correlation
functions(i.e., the fluctuations) in the isotropic fluid. Results
have been obtained for DHS mixtures at a large(but still
fluidlike) total densitysr* =0.7d which is in the range where
the pure system spontaneously polarizes at sufficiently low
temperatures. The same type of phase behavior is found to
occur in moderately asymmetric DHS mixtures(i.e., large
interaction parametersG), indicating that the tendency for
ferroelectric ordering in these systems overwhelms any ten-
dency to demix. The main difference to the pure system(at
r* =0.7) is then a monotonicshift of the isotropic-to-
ferroelectric transition temperatures towards smaller values
upon replacing strongly coupledA particles more and more
by weakly coupledB particles. This is consistent with a re-
cent low-temperature Monte Carlo study[32] where the de-
gree of spontaneous polarization in DHS mixtures has been
found to be much smaller than in the pure system. The
RHNC fluctuations also indicate the ferroelectric transition
to be accompanied by a change of composition such that the
polarized phase is richer in the strongly coupled species.

Comparing these findings to MMF results at largeG,
which have been obtained previously by us in Ref.[23], it
turns out that the much simpler MMF density-functional
theory does indeed reproduce the phase behavior on a quali-
tative level, even though the actual ferroelectric transition
temperatures are drastically overestimated(compared to the
RHNC results, which are expected to be too high them-
selves). However, our present results show that even the
qualitative consistency between the two approaches ends
when one considers strongly asymmetric DHS mixtures
characterized by smallG. For these systems the RHNC
analysis predicts demixing transitions to occur alreadywithin
the isotropic phase(at intermediate concentrationscA of the
“stronger” component). This generalizes previously reported
RHNC results[11,12] on (isotropic) demixing in DHS-HS
mixtures(G=0), a phenomenon which has also been detected
in recent computer simulations[10]. Within the MMF ap-
proach, on the other hand, the isotropic demixing transition
is absent, and the mixtures display only isotropic-to-
ferroelectric transitions even atG=0. Given the severe ap-
proximations within the MMF we conclude that demixing
transitions in dipolar mixtures without any dispersive inter-
actions, as observed in the RHNC, are in fact highly non-

trivial effects driven essentially by interparticlecorrelations
rather than by the anisotropic dipolar interaction itself.

Finally, we have shown that RHNC and MMF results do
become consistent again for mixtures where the dipolar in-
teractions are supplemented by dispersive—i.e.,spherically
symmetricandattractive interactions. Specifically, consider-
ing a mixture of Stockmayer spheressAd and hard spheres
sBd we have found that the MMF recovers demixing within
the isotropic phase(as does the RHNC) even if the isotropic
attraction betweenA particles is so small that the pureA fluid
does not display conventional vapor-liquid coexistence. This
sensitivity may indicate that dispersive interactions play a
similar important role for demixing transitions in dipolar
mixtures, as they do in the context of vapor-liquid coexist-
ence of pure dipolar fluids.
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APPENDIX: DIELECTRIC CONSTANT OF THE DIPOLAR
MIXTURE

In this appendix we give a brief derivation of expression
(2.11) for the dielectric constant of the dipolar mixture. We
start from the two-component generalization of Kirkwood’s
formula [33]—that is,

se − 1ds2e + 1d
e

= 4pbo
ab

Îrarbmamb gab
K , sA1d

where thegK factors are given by

gab
K = dab −

1

3
Îrarb

12p
h̃110

ab s0d. sA2d

In Eq. (A2), h̃ab
110s0d=4pedrr2 hab

110srd and hab
110srd is the

(dipole-dipole) projection of the total correlation function be-
tween a and b in a space-fixed coordinate system. Using
standard relations(see Appendix 3B in Ref.[24]) between
the space-fixed frame and thek frame employed in the
present work one finds

gab
K =

1

3 o
x=−1

1 Sdab + s− 1dx
Îrarb

3
h̃ab

11,xs0dD . sA3d

We now make use of the exact Ornstein-Zernike relations
[12] for the mixture. For the coefficients of interest these
imply

dab + s− 1dx
Îrarb

3
h̃ab

11,xs0d = fsFxd−1gab, sA4d

where the right-hand side involves elements of the inverse of
the matrices defined in Eqs.(2.10). Equations(A4) allow us
to express thegK factors in terms of the direct correlation
functions—that is
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gab
K =

1

3
hfsF0d−1gab + 2 fsF1d−1gabj. sA5d

The next transformation involves the prefactors of thegab
K

appearing in Eq.(A1). Generalizing corresponding relations
for one-component dipolar fluids[see Eq.(C8) in Ref. [16]]
one obtains

4p

3
bÎrarbmamb = − ÎrarbÎ 5

4p
c̃ab

112s0d = fF0gab − fF1gab.

sA6d

Combining Eqs.(A1), (A5), and(A6) yields the relation

se − 1ds2e + 1d
e

= 2 TrZ − TrsZ−1d − 2, sA7d

where we have introduced the product matrixZ =F0sF1d−1,
and “Tr” denotes the trace. In order to proceed towards the
simpler relation(2.11) for e we first show that one of the two
eigenvalues ofZ is identically one. The central equation is
again Eq.(A6) since it implies the relation

detsF0 − F1d = 0 sA8d

and, consequently,

detsZ − 1d = detfsF0 − F1dsF1d−1g =
detsF0 − F1d

detF1
= 0.

sA9d

It follows now immediately that one of the eigenvalues ofZ
is identically 1. This property in turn implies

TrZ = detZ + 1,

TrZ−1 = sdetZd−1 + 1, sA10d

where we have used the fact that the trace and determinant
are equivalent to the sum and product of the eigenvalues,
respectively(plus the fact thatZ is a 232 matrix). Inserting
Eqs. (A10) into Eq. (A7) and identifying corresponding
terms on the left- and right-hand sides of the resulting equa-
tion one finally obtains

e = detZ , sA11d

which leads immediately to Eq.(2.11).
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