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Demixing in simple dipolar mixtures: Integral equation versus density functional results
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Using reference hypernetted chaRHNC) integral equations and density functional theory in the modified
mean-field MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres.
The two specieéA andB) differ only in their dipole moments, andmg, and the central question investigated
is under which conditions these asymmetric mixtures can extidntixingphase transitions in the fluid phase
regime. Results from our two theoretical approaches turn out to strongly differ. Within the R#hI€h we
apply to the isotropic high-temperature phasemixing does indeed occur for dense systems with small
interaction parameterE:mélmi. This result generalizes previously reported observations on demixing in
mixtures of dipolar and neutral hard sphetEs 0) to the case of true dipolar hard sphere mixtures. The RHNC
approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory,
whereas isotropic-to-ferroelectric transitions occur only at lafgdthe MMF theory, on the other hand, yields
a different picture in which demixing occuins combinationwith spontaneous ferroelectricity at dllconsid-
ered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions
in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small,
asymmetric amounts of van der Waals—like interacti¢eusd thereby supporting the systems tendency to
demix) one finally reaches good agreement between MMF and RHNC results.

DOI: 10.1103/PhysRevE.70.031201 PACS nunmder77.80—e, 64.70-p, 61.25.Em, 64.75.g

I. INTRODUCTION moments[13]. Moreover, the present model, of which the
. , i . DHS-HS mixture considered previous[jt0-17 is just a
Phase transitions in fluids are very sensitive to the naturfmiting case(mg=0), allows us to investigate directly the
of intermolecular interactions, and this is particularly true for;,qence of the anisotropic dipolar interactions on demixing
fluids involving permanent molecular dipole moments. Inphenomena, contrary to most other studies of dipolar mix-

fact, recent theoretical research has shown that even mogf e jnvolving usually models with additional dispersive in-
simple dipolar model fluids can display new and unexpecte bractions(see, e.g.[14] and [15]). Indeed, given that pure

phase behavior, such as spontaneous polarization in denggig figs (or mixtures withmg=m,) polarize spontane-
liquid states[1-4] and self-assembly of the particles into o, ,q\y ot sufficiently large densities and coupling strengths, a
chains with head-to-tail aligned dipoles in the dilute gasyegtion of particular importance is not only whether true

[5-8]. Chain formation is particularly pronounced in dipolar iyt res with mg +m, demix at all, but also whether they
fluids without additional dispersive interactions, such as diyamix already in thésotropic phase.

polar hard spherefDHS’s) [6-8|, whereconventionalgas- To address these topics we employ in this study two dif-

liquid coexistencewhich has been expected since the anglesgent theoretical approaches, that is reference hypernetted
averaged . d|_polar Interaction be_tween_ two partlcles_ 'Schain (RHNC) integral equation theory and density func-
attractive is indeed absenf9]. Against this background it i n4 theory in the modified mean-fieMF) approxima-
seems somewhat counterintuitive that mixtures of DHS’s ang

neutral hard sphergsiS's) have been showf.0-13 to ex- The RHNC theory is used to calculate approximate two-
hibit conventionademixingphase transitions, indicating that aicle correlation functions in the homogeneous isotropic
the effect _Of dipolar forces in mixtures may be very differentgq phase. Combining this structural information with an
from that in pure fluids. appropriate stability analysis we thepredict the low-

In the present study we are concerned with the appearan¢gmnerature phase behavior on the basis of diverging fluctua-
of demixing phase transitions in binary mixtures of DHSjong Their direction in the space of order parameters indi-

with the two specieé andB differing only in the magnitude .. tes the character of the transitiqe.g., isotropic-to-
of the dipole momentan, andmg (i.e., the size of particles is - ¢oroelectric  andior  demixing  transitions Previous
the same in each compongrithough not particulary realis- 5 5jications of this approach have shown that the phase be-
tic as a model for polar molecular mixtures, binary DHS payior of DHS fluids observed in computer simulations is
fluids do have relevance for ferrocolloids which are COM-correctly predicted16—18, including the existence of iso-
monly characterized by a nonuniform distribution of dip°|etropic demixing transitions in DHS-HS mixturgd1,12.
One may therefore expect reasonable results for true binary
DHS fluids as well. We note that, at least for the isotropic
*Electronic address: gabriel.range @fluids.tu-berlin.de phases, it is in principle possible to analyze the phase behav-
"Electronic address: sabine.klapp@fluids.tu-berlin.de ior directly on the basis of RHNC phase coexistence curves
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following from the RHNC chemical potentials and pressure . m,my, . ~ ~ .
) ) . P —_a'®b

[19]. These calculations, however, would imply a substantial Uap (I 12, @1, 2) = 3 {M(wy) - M(wp) = A M(wy) - F15]

additional effort. In the present study we are interested 12

mainly in the qualitative phase behavior rather than in the X[M(wy) - 15}, (2.2

actual location of phase coexistence curves.

Within the MMF approach, on the other hand, phase dia-
grams are determined more directly by minimizing a free
energy functional, where two-particle correlations are ap- o \2 [ g\

= (2)"-(2)]

wherem(w) andf 1, are unit vectors in the direction of and
r 15, respectively. Finally,

proximated by the Boltzmann fact§20-23. In a previous — (2.3
paper[23] we have presented a detailed investigation of the
global MMF phase behavidwwithin the fluid rangg of DHS  is the LJ potential. Setting,,=0 the pair potentia(2.1)
mixtures. Here we focus on comparison of the results taeduces to that of DHS mixtures. For finite attraction param-
those from the RHNC stability analysis. Indeed, while theeterse,, the present model is a slightly modified version of a
main advantage of the MMF is that both isotropic and polar-Stockmayer fluid mixturgsee, e.g., Ref14]); the additional
ized phases can be easily included, interparticle correlationsard core has been introduced for numerical convenience.
are handled on a much simpler level than in the integral
equation theory. Comparison of the two approaches therefore
provides useful insight concerning the importance of corre- A main concern of the present work is the mixtures phase
lational effects for the phase behavior. Indeed, our resultbehavior at large(but still fluidlike) total densitiesp=p,
suggest thatsotropic DHS mixtures can demixunder ap-  +pg (with p,=N,/V). Based on previous studies of two lim-
propriate thermodynamic conditionsut that these demix- iting cases—that is, mixtures with only one dipolar compo-
ing transitions are rather subtle phenomena in that they disaent(mg=0) [10-12, on the one hand, and one-component
appear within the MMF approach. dipolar fluids(pg— 0) [1-4], on the other hand—one would

The rest of the paper is organized as follows. In Sec. Il weexpect these systems, upon cooling from a mixed isotropic
formulate the model and present main expressions of the twRigh-temperature phase, to eitfsmixor spontaneously po-
theoretical approaches employed, including an explicit exXiarize or exhibit a combination of these phase transitions.
pression(plus derivation in the Appendjxfor the dielectric  Condensation transitions seem also possible, especially when
constant of the dipolar mixture. Numerical results Obtainedsystems with isotropic interactions are Conside(é_é_,
within the RHNC and MMF theories are presented in Secseab>o) [14]. In order to proper|y characterize the phage
Il A and I B, respectively. It turns out that the predictions pehavior based on information of the isotropic high-
differ qualitatively when strongly asymmetric DHS mixtures temperature stat@vhich can be treated by standard integral
are considered. Therefore, we finally discuss systems witBquation techniqueg24]), we apply a stability analysis de-
additional spherically symmetric interactions, for which theyeloped by Chen and Forstmaiitil,12. Contrary to other
RHNC and MMF approaches become roughly consistenframeworks such as Kirkwood-Buff theofg5], the general
again. Our conclusions are summarized in Sec. IV. analysis of Chen and Forstmann gives us a rigorous criterion

on which we can decide whether it is demixing or conden-
sation or an orientational instability which dominates the
Il. THEORY phase behavior.

The central idea is to consider the chardife=() -9 of
the grand canonical free energy induced by density fluctua-
tions 8p,(1) around the homogeneous and isotropic equilib-
rium state, characterized by constant singlet dens;ti€})
=p,/ 4. Up to second ordew) is given by

l12

B. RHNC stability analysis

A. Model

We consider binary mixtures of two speci@s andB) of
dipolar hard spheres with equal diametersbut different
dipole momentsn, andmg. In addition to the dipole-dipole

interaction a Lennard-Joned.J) interaction between the $0
spheres may be present as well. The resulting pair potentiad() =~ —2 dlj d26p,(1) m opp(2)
between two particles with coordinaté4)=(r;, ;) and Pal ) OPple) Teq
(2)=(r,,w,) is given as k -|-
- | d f d20p, (0| 2212 ¢ (12 ap2),
pil 4
oo, f12 <ao, (2.4)
Uap(12) = { (2.3) _ , : .
B 12 01,0) +UG(T), T1p> 0, wherekg is Boltzmann’s constanT, is the temperatures,, is

the Kronecker delta, and,,(12) is the direct correlation

function at equilibrium. For eactsmall) fluctuation, the cor-
where ri,=|ry,|=[r,-r| is the particle separationw  responding value o determines the “restoring force.”
=(0,¢) represents the orientation of a dipole in a spatiallyStability (or metastability therefore implies thas() is posi-
fixed coordinate system, and the subscriptandb denote tive for fluctuations with arbitrary directions in density space.
the components consider¢d,b=A,B]. The dipolar poten- Expression(2.4) can be simplified by introducing Fourier
tial is given by transforms of the density fluctuations and correlation func-
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tions, respectively, and expanding these quantities along [Dolab= Sap— Vpap 500,0(0)_ (2.7
angle-dependent basis functiofis2]. Choosing the wave o Olab™ Tab ) b b o
vectork along the polar axi§‘'k frame”), the density expan- A vanishing of the smaller eigenvalug, of Dy indicates
sion readsép,(k, ) =%, , SpX(K)Y, (@), wherek=|K| demixing or condensation of the system. This can be clari-
and theYIlX(wl) are sphlérical harmc;hics. Furthermore, onefied by .invehstigating 'the di'rectilon of the eigenvector related
has Eab(k,wl,w2)22|l|2 E)(Eglgzvx(k)‘ylllz’)((wlaw2)! where t_oéﬂ)})I,DO Oln/ t’_e tV\:jo-glme_n;I%gao /s?icep Spannedd wp]l
-min(l3,l,) < xy=<min(l;,1,) and theW'v2x are rotational in- ~ “PA (0)/\pa and [8pl,=dpg (0)/vpg. Purecondensation

variants defined in Appendix 3B of ReR4]. Equation(2.4y ~ °cCUrs if the eigenvector lies along directinp=(xpa, Vpa),
then transforms to since the projection

2ok T . _ p - x,= 3p3%0) + 3p3%0) = 3p (2.9
IS 5, (I, (2.9 A
K ox i

N = . .
corresponds to a fluctuation of thetal number density. On

) o L the other hand, pure demixingvith fixed total density is
where we have introduced the combinations of indices jngicated by an eigenvector along directisg=p=2(\pa pg

:(aill) arjg j=(b,l,), and the fluctuations 5E,X(k)_ ~Vog pa) LX,, since
=6p2X(K)/\p, Furthermore, the elements of the matrices

M (k) are defined as op %o = pg 9p2%0) — Vpa 5p2°%0) = 5¢ (2.9
PaPb ] is a pure concentration fluctuation. By monitoring the angle
M, (K ]jj = &; — (= )X 2L D@,+ 1) Cap? (k). a between the eigenvector and, say,we can thus predict
! 2 the type of transition the system approaches.
(2.6) We now turn to polarization fluctuations related to the 2
Due to symmetries of the coefficierd§/2X(k), the matrices X 2 Submatrices=, andF; of M¢(0) andM.;(0) with ele-
M (k) are real and symmetric ard ,(k)=M_,(K). ments
The structure of Eq(2.5) implies that fluctuations with V’EM
different wave numberk and angular indicey are decou- [Folan= San— ci%0),
pled. Stability therefore requireall matricesM (k) to be 3
positive definite, which can be easily checked by an investi- J—
ation of the eigenvalues. In the staljtg metastablesys- VPaPb~
?em all eigenva?ues are positive. Phlg:; transitionli gre indi- [Filan= 0+ 3 Cétll(o)' (2.10

cated by an eigenvalue going to z&upon decreasing, for ) . _ o
example, reflecting that there is a direction in density SpaCeFerroeIectrlc transitions of the mixture are |nd|cated_ when
along which the restoring force for fluctuations becomes parthe smaller eigenvalukg of F; goes to zero. To see this we
ticularly small. Identifying that eigenvalue and monitoring consider the physical precursor of ferroelectric order—that
the related direction in density space we can thus predict tht$: the mixture’s dielectric constaat This quantity is related
character of the phase transition under consideration. to matrices(2.10 by

Practically, the direct correlation functions determining deF,
M, (k) are calculated via numerical solution of the Ornstein- €= ,
Zernike equationg12,2q for the isotropic fluid mixture def,
combined with the reference hypernetted chain closure apvhere “det” denotes the determinant. A derivation of Eq.
proximation(involving Verlet-Weis[27] hard sphere correla- (2.11) can be found in the Appendix. Numerical investigation
tion functions. The details of these calculations can be foundshows that dét, remains finite at all states considered.
elsewhere(see, e.g., Refd28,16). Here we note that our Therefore, a vanishing of the smaller eigenvalgef F, can
numerical solution scheme implies a truncation of the expanbe uniquely related to a divergence of the dielectric constant,
sion of €(1,2) at I7™=17*=2 and thereforgy|™®=2. The
matricesM o(k), M .4(k), and M .,(k) then have dimensions e—* < A—0, (212
6X6, 4x4, and 2< 2, respectively. which indicates an isotropic-to-ferroelectric transition. The
direction of the eigenvector related ¥q- indicates which
component “drives” the transition; usually this will be the
component with stronger dipolar interactions.

(2.11

1. Most important instabilities

Since we are mainly interested in demixing or condensa
tion and in isotropic-to-ferroelectric transitions, long-
wavelength(k— 0) fluctuations of the number densitiésn-
gular indiced;=x=0) and the polarizationd;=1, y=0, £1)
are particularly important. We can discuss these fluctuations As a supplement of the RHNC stability analysis, which is
separately from each othéand from other fluctuations based on the homogeneous isotropic phase and thus yields
since the matriceM ((0) and M ,;(0) have block form with  only indirect information on the overall phase behavior, we

C. Modified mean-field density functional theory

respect to the indicels. also perform modified mean-field density-functional calcula-
For number density fluctuations we therefore consider théions. The great advantage of this approach, which we have
2 X 2 submatrixD, of My(0) with elements decribed in detail in Refi23], is that ferroelectric phaséas
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TABLE I. The coeﬁicientsuggl [see Eq.(2.18)] for I,n<4. The quantities(”) follow from numerical
integration of Eq(2.19.

ab

n=0 n=1 n=2 n=3 n=4

1=0 -8RI 0 ~(8mpI3Y) 0 -(8mB3125)1%)

1=1 0 ~8/27) 0 ~(16m%225)3) 0

1=2 0 0 ~(8mpBI3751% 0 ~(32mp%61251')

1=3 0 0 0 (167p%2572515) 0

- e

1=4 0 0 0 0 -(8mpB%992251
long as they are spatially homogenepean be easily in- Fex *
cluded. We thus consider fluid states with singlet densities > = PaPo Uap) Xal s (2.16)

ab 1=0
_ Pa— _ Pa ; ;
pa(ry,07) = Zaa(COS 0) = ;(5 + 2> @ Pi(cos 0)) : wherea, ,=1/2 and thecoupling parameters are given as a
=1 power series in terms of the dipole moments—that is,
(2.13

Wherg aa(clos 6) is a normalizgd orientational djstribution Ugp, = > uggl(mamo)n_ (2.17)
function [ [Z; dxa,(x)=1], and 6 is the angle relative to the n=0

director of the orientational ordéif presenj. Consequently,

we can expand the distribution in Legendre polynomials For n#1, the temperature-dependent coefficieu%,. ap-
[see second line in E@2.13)], where the coefficienta,, are  pearing in Eq(2.17) are defined by

connected to the usuéth-rank order parametef3,, via

1 1
T 2 ul = — (- J dw; dw, dw;, P(cos 6;)
I:)a,lzf dxaa(x)ﬂ(x):man. (2.149 L™ 247! ab 12 EL2 T 1
_1 ~
X P|(C0S ) D1 f w1, g, w1), (2.189

The isotropic phase is specified B,=;=0—i.e., ay(x)
=1/2—whereas a ferroelectric phase is characterized byyhere thelgg are (short-rangg spatial integrals,
P, # 0 for all I.

Employing Eq.(2.13), the grand canonical density func- ) % 1 ¥
tional Q) of the mixture is given by23] lap = | driog{exd- Bug(ri)] = ol (2.19
- 12

Q—E&‘U A3_1+E&i ld_ Inl2e. . . . .

Y=g N(paA3) — 1] 3 Xa(X)IN[2a5(X)] which can be easily evaluated by standard numerical integra-
a a 1 tion techniques. Furthermore, the angular integrals in Eq.
pa4n-37° F s (2.18 can be solved by expressing both the Legendre poly-
B (1-7)? I ~ [P 219 omials and the quantitiesP],, [where ®;,=r; M,

—-3(My 1) (M, 1,)] by spherical harmonics as described in
where the first two terms on the right-hand side of Eq15 Ref. [23].
correspond to the idedtranslational and orientationapart Finally, the coefficient corresponding te=1 in Eq.(2.17)
of the free energy, and the third term is the Carnahanis related to an integral over the long-range dipolar potential
Starling expressiof29] for the hard sphere reference systemitself and therefore requires special treatment. One finally

(with packing fractionn=mpa>/6). FurthermoreF® is the  obtains(see Ref[23] and references thergin
excess free energysee below, and the last term in Eg.

(2.15 contains the chemical potentiajs, controlling the @ 8
composition of the mixture. Uap, =~ Ed’l' (2.20
The MMF approximation[20,3Q consists in setting the
pair distribution functiong,,(12) involved in theexactex- In practice, we truncate the Taylor expansion appearing in

pression forF® equal to its low density limit—i.e.g,,(12)  Ed. (2.17) at ny,,=4. Explicit expressions for the resulting
—exd—Bua,(12)]. The implementation of this approxima- set(l,n<4) of coefficientsugglI [after performing the angular

tion into the density functional is described in detail in Ref.integrals in Eq.(2.18] are given in Table I. Inserting Egs.
[23], and essentially the same derivations can also be usd@.17) and(2.16 into Eq.(2.15 completes our construction
for the present systerwhich differs from that considered of the MMF density functional. In order to identify the set of
previously[23] only by the presence of additional LJ inter- ten parameter${p,, @, 1, ... @5 4}) characterizing the equi-

actiong. As a result, the excess free energy reduces to #brium state at giveriu,, T,V), we solve the Euler-Lagrange
quadratic form in the densities and order parameters, equations
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FIG. 1. Stability limits of binary DHS mixtures with interaction FIG. 2. Dielectric constant as function of the inverse tempera-

ratiosI'=<0.4 andI’=0.4 (insep in the concentration-temperature ture for the pureA fluid and for mixtures at,=0.2 and various
plane (T =kgTa3/ma,ca=pa/p). The total density is fixed ap”  values ofT.

=0.7.
same limiting value forca,— 1, corresponding to the tem-
a(QIY) S(QY) perature where pure isotropic DHS fluids become unstable
p =U, ) =0. (2.21 due to an isotropic-to-ferroelectric transition. This is illus-
a a

trated in Fig. 2 where the behavior of the dielectric constant
This is done numerically by employing a multidimensional uponT* — Ty is displayed for various values &F, including
Newton-Raphson algorithm. Moreoverpexisting statest  I'=1 where the actual value of, is irrelevant. The appearant
given chemical potentialg, and ug are identified by com- divergence ofe at I'=1 indicates formation of a low-
bining Egs.(2.21) with a further equation reflecting that the temperature fluid phase wigpontaneoufong-range parallel
pressurep=-QY ua, ug, T/ V=-Q[p:%, a5(x)]/V of both  ordering of the dipole moments, and this prediction is con-
states have to be equal as well. sistent with various computer simulation resulis-4]. A

comparison of the actual transition temperatures indicates

that RHNC theory overestimates the tendency for ferroelec-

Ill. RESULTS AND DISCUSSION tric ordering, but still yields the best theoretical results so far

[16].

Turning back to Fig. 1 we note that the ferroelectric in-

Most of our RHNC results have been obtained for DHSstability of the pure system reappedexcept forl'=0) on
mixtures without additional LJ interactiorfs.e., €,,=0 in  the left-hand side of the diagranis,— 0), since these sys-
Eq. (2.3)]. These systems can be characterized by the raems are again one-component DHS fluidspat 0.7 but
duced temperaturg =kgTo®/m3, the interaction parameter with dipole momentsmg<m, and therefore T (c,=0)
l“:mé/mi specifying the different dipolar couplings within =T T;(CA: ]_)sT;(CA: 1). In the two subsequent paragraphs
the two species, the reduced total density(pa+pg)o®,  we discuss in detail the behavior of trugixturesof DHS's
and the concentration of tfecomponentca=pa/p. All cal-  with compositions in between the limiting casges—0, 1.
culations have been carried out at fixed total dengity
=0.7. This value has already been considered in previous
RHNC integral equatioifil1,12 and Monte Carlo simulation Typical for mixtures with relatively large interaction pa-
[10] studies for the limiting casE=0, which corresponds to rameters 0.41'<1 is that replacingA particles more and
a mixture where th& particles are just hard spheres. In the more by B particles—i.e., decreasing, from the limiting
present study we consider systems at seven different interagalue 1(pureA fluid), yields amonotonicdecrease o]'; as
tion parameters in the range<d" <1, where['=1 is again a illustrated in the inset of Fig. 1. Furthermore, when consid-
special case in that the corresponding mixtures are essesring a fixed concentration—sag,=0.2 (see Fig. 2—the
tially one-component DHS fluids for all concentrations O dielectric constank continues to diverge as it does in the
<ca<1. We also note that the behavior of mixtures with pure A system, suggesting that the ferroelectric transition is
I'>1 follows from the present systems by interchangig preserved. Further evidence for this behavior is seen in Fig. 3
andB. where we have plotted the eigenvalugs[see Eq.(2.12)]

For eachl’ we have first determined the stability limits and A [see Eq.(2.7) below] as functions of the inverse
(spinodals of the mixed isotropic fluid phase—i.e., the tem- temperature for two differently composed mixtures at a rep-
peraturesT(c,) where one of the eigenvalues discussed inresentative interaction ratid’=0.8). For both mixtures, the
Sec. 11 B 1 approaches zero upon lowerifig towardsT,.  fluctuations related tap, are found to be mainlgoncentra-
Results are shown in Fig. 1. All of the lines approach thetion fluctuations; i.e., numerical values of the angiebe-

A. RHNC stability analysis of DHS mixtures

1. Mixtures withI'=0.4
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FIG. 3. The eigenvalues: (solid lineg and\p (dashed linesas
functions of the inverse temperaturelat0.8 andc,=0.2 (a) and
CA:O.B(b).

FIG. 4. The eigenvalues: (solid lineg and\p (dashed linesas
functions of the inverse temperaturelat0.2 andc,=0.2 (a) and
ca=0.8(b). The inset of(a) shows results foc,=0.2 andl’'=0.

tween the fluctuation vectofp and the direction of pure representative valugss close to zero, indicating that the
concentration fluctuations, [see Eq.2.8) belowj are very  diverging fluctuations related o, are essentially concentra-
small. Comparing, however, the actual magnitude and tention (rather than total densifyfluctuations. The smalhega-
perature dependence ®f in Fig. 3 to that ofAr one con- tive values ofa merely suggest that the phase richerAin
cludes that the concentration fluctuations have minor imporparticles will also be somewhat dengethich seems sensible
tance against those of the polarization, which diverge wheidue to the stronger coupling within th& specieg Figure
approachingTy, (as indicated by the sudden decreasagf  4(b) finally shows that the situation changes again at larger
Thus, the origin of the stabilitiy limits in Fig. linse) is ¢, in that polarization fluctuations become dominating for
indeed spontaneous polarization rather than a demixing'*—>T;. TheseA-rich systems thus transform directly into
within the isotropic phase, even though the decreaskpyof ferroelectric phases as do the mixtures with ldrgiscussed
suggests that the isotropic-to-ferroelectric transitions may bé Sec. 111 A 1.
accompanied by small changes in the composition of the Taken altogether, our results indicate that strongly asym-
system. In fact, given that th& particles are more strongly metric DHS mixtures characterized bytermediatevalues of
coupled one would actually expect the low-temperaturec, may exhibit demixing phase transitiomsthout simulta-
ferroelectric phase to be characterized by somewhat highareous ferroelectric orderingven though one would actually
values ofc, (and, also,p). Finally, having identified the expect the demixed fluid phases to undergo a second phase
ferroelectric character of the stability limits in Fig(ihsep it ~ transition of ferroelectric type at some lower temperatures
is plausible that the stability limit of the isotropic phase in- It seems then obvious that the demixing tendency becomes
deed decreasdfor a fixedI") whenA particles are replaced even more pronounced upon further decrease of the interac-
by (less strongly coupledB particles. tion ratio. That this is indeed the case is demonstrated in
Figs. §a)-5(d) where we have plotted, for four different val-
2. Mixtures with I'<<0.4 ues ofT", the values ofzp and \r obtaineddirectly at the

Mixtures with more asymmetric dipolar couplings exhibit Stability limit. Compared td'=0.2[cf. Fig. J¢)], the range
a different physical behavior as indicated already by the®f Ca Where)p is the smallest eigenvalughus indicating
shapeof the spinodals displayed in the main part of Fig. 1:demixing significantly broadens wheh is decreasedsee
upon decreasing, from 1 the temperatureE, first riseand ~ Fi9S- %8) and gb)], the largest window occurring fdr=0
start to decrease only at sorfie-dependentsmall value of correspondlr]g to a mixture of DHS’s and pure hard. spheres.
the concentration oA particles. Also, as seen from Fig. 2, Representative results for the temperature behavior of the
the dielectric constant at small concentratiomsremains ~€igenvalues a’=0 are displayed in the inset of Fig. 4. The
small for all temperatures considered, suggesting that the stdata clearly reveal the dominance of concentration fluctua-
bility limit of these systems is notat least not primarily ~ tions over those of the polarization. We note that the case
related to a ferroelectric transition. In order to get a clearer
picture we investigate again the eigenvalagsand\p, tak- TABLE II. Numerical values of the angle [see Eq(2.9) be-
ing now the casd =0.2 as an example. In Fig. 4 the eigen- low] at the stability limit cor_respondlng t_0A=O.2 an_d different
values are plotted for two different concentrations, thevalues of". Pure concentratioiitotal density fluctuations corre-
smaller of which is in the range where the stability limit goesSPOnd t0a=0°(90°).
through the maximum. The corresponding res{se Fig.
4(a)] clearly show that it is nowy which goes to zero sig- I'=00
nificantly faster tham\g (contrary to what we have seen be- _5 110
fore). Furthermore, the related angiesee Table Il for some

r=0.1 I'=0.2 =04

-2.91° -3.62° -4.85°
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CA CA 0.3 1 1 1 1 1
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FIG. 5. Eigenvalue&r (solid lineg and\p (dashed linesat the p*
stability limits for I'=0 (a), I'=0.1(b), I'=0.2(c), and['=0.4 (d).

FIG. 6. MMF density-temperature phase diagrams for DHS-HS

I'=0 has also been investigated previously both by RHNGMixtures (I'=0) at Ay" — =2 (solid and dotted lings Ax"=2.0
integral equationg11,12 (with which studies our own re- (dashed I!ne)s gndA,u =_4.0(dot-dashed lines The abbreviations
sults are consistenind by Monte Carlo computer simula- @€ explained in the main text.

tions [10]. The latter have confirmed the occurrence of de-

mixing transitions, including that the resulting phases areltcp related to thericritical point (TCP), the transition be-
indeedisotropic as suggested by the theory. It seems thugween the two phases is of first order both in density and in
safe to assume that the RHNC stability analysis is also corthe orientational order parametess,-;. Above Tycp the

rect in predicting isotropic demixing transitions for true di- IG-FL transition becomes continuous. The resultargical
polar mixtures with small, but finite values bt line separating the isotropic and ferroelectric phase can be

found from a Landau analysis as described in Rgf8,23.
Starting from the puréd behavior, one apparent change
B. MMF density functional results induced by increasing\u” is a shift of the isotropic-to-

Given the severe approximation for the interparticle cor-ferroelectric transition. Indeed, when considering mixtures at
relations within the MMF theory it is interesting to see to fixed total densityor fixed temperatupeone finds from Fig.
which extent this approach reproduces the RHNC prediction§ that the IG-FL transition moves towards lower tempera-
for the phase behavior, particularly in context with demixingtures (or higher densitigswith increasingAu . Since in-
transitions. We focus on the ca$e=0 (DHS-HS mixturg  crease ofAu  implies decreaseof the concentration ofA
where the tendency to demix into two isotropic phases iarticles the results in Fig. 6 also imply that, at fixed density,
largest. Also, apart from “hard core” systems without isotro-the ferroelectric transition temperatures decrease with de-
pic attractions(i.e., €,,=0 as in Sec. lll A we consider in creasingca. This is seen more directly in Fig. 7 where the
addition one example where the component is a Stock- transition temperatures at=0.7 are plotted as functions of
mayer fluid as defined in E@2.1).

From a technical point of view comparison between the 11 L ' ' T '
RHNC and MMF results is complicated by the fact that,
instead ofp” and c,, the reduced chemical potentia,bzzij1
= ,BMa—In(Agl a°) of the two species are the natural input for
the MMF calculations along with the temperatufe. We
handle that point such that we first consider density-
temperature MMF phase diagrams of the fluid phase regime &~
obtained at fixed chemical potential dif“ferematf,u*z,uf3
- ,u*A. Based on these diagrams we then extract concentration-
temperature diagrams fikedtotal density in order to make

contact with the RHNC resultsee Fig. 1 05 _
1. Mixtures without isotropic attraction 04 ' ' ' ' : : ' : '
. . 0 01 02 03 04 05 06 07 08 09 1
Density-temperature phase diagrams lferO ande,,=0 c\
are plotted in Fig. 6 where the different curves belong to
different values of the parametéiw . In the limit Ay — FIG. 7. MMF results for the temperatures related to the bound-

— one recovers the MMF phase diagram of the pufeuid  ary of the isotropic phase ai"=0.7 and various values of.
containing only two fluid phases—that is, an isotropic gasDashed (solid) lines denote second-ordeffirst-orde) phase
(IG) and a ferroelectric liquidFL). Below the temperature transitions.
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the concentratior, corresponding to differemiu’. The re-
sults indicate destabilization of ferroelectric ordering when
the dipolarA particles are replaced by hard sph&epar-
ticles.

A second change upon increasig” concerns therder
of the IG-FL transition which, as seen from both Figs. 6 and "«
7, becomes discontinuous for all temperatures and densitie
corresponding to the fluid phase regime. This concerns no
only density and polarization but also the concentratign
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(not shown), the values of which in the coexisting IG and FL
phases are observed to become very different, particularly , R
for large Ax” (where the FL phase is dominated Bypar- 0 02
ticles). We stress, however, that regardless of the value of P P
Au" or p* considered, jumps i, are always accompanied _ _
by spontaneous polarization. In other words, the MMF ap- FIG. 8. MMF density-temperature phase diagrams of give
proach does not reproduce demixing phase transitiotsn Stockmayer fluids characterized ly,=0.3 (a) and e,,=0.4 (b).
the isotropic phase observed both in the RHNC stability ana- o )
lyis (see Sec. Ill A and Ref§11,12) and in computer simu- that the system, similarly to the pure DHS fluicf. Fig. 6)
lations [10]. QOeant ghsp_lay phasg coexistence between an IG_ and an
Given this discrepancy @ =0 where the mixtures ten- isotropic I|qU|d_(IL). This changes, of course, upon increas-
dency to demix is largest anyway, it is not surprising to finding the attraction, and an example can be seen in K. 8
similar differences between the MMF and RHNC predictions’/Nere we present the phase diagram of the pufuid at
at finite interaction ratioMMF results at finitel” have been  €aa=0.4 (CP denotes the IG-IL critical point However,
obtained by us previously in Ref23]). Some MMF results ~ Sinceé we are interested in dipole-dominated systems, we fo-

for the boundaries of the isotropic high-temperature phase &S in the following on the cas€,,=0.3.

I'>0 are included in the,-T' diagram in Fig. 7(density ~ Corresponding mixture phase diagradfisite A ) are
p"=0.7). For all cases considered the correspondfirgt- or dlsl*alay_ed in Fig. Ba). It is seen that_large, positive \(alues of
second-order phase transformations are isotropic-to- A4 Yield a topology characterized by one first-order
ferroelectric transitions, with the transition temperature delisotropic-to-ferroelectric transitiotsee dashed lingswhich
creasing monotonically on decreasigg This is in contrast 1S @gain very similar to what one finds for corresponding
to the RHNC spinodalgsee Fig. 1 which, for sufficiently DHS-HS mixtures(cf. Fig. 6). A 5|gn|_f|cant difference be-
smallT, exhibit a maximum related to demixing transitions tween Stockmayer and DHS-HS mixtures appears only at
without an accompanying isotropic-to-ferroelectric transi-intermediate values of the chemical potential differefecg.,
tion. One should also note, however, that MMF and RHNCA# =1.8), where the additionaRA attraction generates a
theories do give consistent results at lareihis concerns ~ cfitical point (CP) not present in the hard core systems. Its
both the shape of the phase boundaries and their origin—th&@ture becomes clear when we consider the corresponding
is, spontaneous polarization—even though there are obviolPncentration-temperature diagram in Figo)dwhich shows
differences in the actual predictions for the ferroelectric tranihat the two phases coexisting below the critical temperature
sition temperatures. For example, BE0.8, c,=0.2 the differ mainly in c, rather than in total density. Moreover,

ferroelectric transition temperature predicted by the RHNC i0th of these phases amepolarized as seen more directly

0.4 L 1 L 1

approximately 4 times smaller than the corresponding MMATOM Fig. 10 where the behavior of the polarizatién, ,

result. On the other hand, both approaches predict the orien-
tationally ordered phase to be characterized by larger value
of cy andp’.

2. Influence of additional dispersive interactions

In view of the shortcomings of the MMF theory in pre- .
dicting isotropic demixing transitions in strongly asymmetric
DHS mixtures we conclude this study by a brief discussion
of a system where dipolar interactions are supplemented by
weakLJ interactions. Specifically, we consider a mixture of
Stockmayer sphere®\) and hard sphere®) characterized
by egp=€ag=0 andeaao®/ M= :€,,=0.3. This value of,,,
which reflects that the isotropic attraction betwegrpar-
ticles is much smaller than their mutual dipolar interaction, is
quite realistic for a number of polar molecular fluifi31].
The resulting MMF density-temperatur€l” =kgTo®/ma)
phase diagram of theure Afluid (or the mixture in the limit
Au'" ——) is plotted in Fig. 8a) from which one concludes
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FIG. 9. MMF phase diagrams of Stockmayer/HS mixtufEs

=0, e*AA:O.S). (a) Density-temperature diagrams &t =1.8 (solid
lines) and Au"=3.0 (dashed lines (b) Concentration-temperature
diagram atAu =1.8.
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FIG. 10. Polarization and concentrationsAoparticles as func-
tions of the chemical potential atx” =1.8 andT =0.85 (I'=0,

€xn=0.3.

=(2/3)ap 1 upon crossing the phase boundaries is plotted at a
temperature in between the critical and the triple point IG

IL-FL. The two (lower-density phases coexisting below the
critical temperature are thereforeBarich isotropic gas and
an A-rich isotropic liquid, and we conclude that the critical

point not displayed by the hard core systems is a demixin

critical point within the isotropic phase.
The different phase behavior of Stockmayer/HS an

DHS-HS mixtures within the MMF theory is also reflected

by the different shapes of the phase boundary inah@"
diagram atfixed density p"=0.7. Results for Stockmayer
systems witH"=0 and various finite interaction ratioghere
the attraction parameteeg, have been chosen in proportion
to the dipolar interactionsare plotted in Fig. 1Xsee Fig. 7
for corresponding DHS resujtsFocusing onl’=0 one ob-
serves amaximumin the phase boundary, which is in con-
trast to the monotonic, dependence of the transition tem-

1.1 T T T T T T T T T

1
0.9
0.8
0.7

0.6 [/

0.5

0.4 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

€A
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eaa=0.0

05 06 07 08 09 1

€A

FIG. 12. RHNC resultgsolid lineg for the stability limits of
Stockmayer/HS mixture¢'=0) at p"=0.7 and various values of
e;A. Also shown(dashed lingis the MMF result for the boundary
of the isotropic phase af =0.7 ande;A: 0.3.

peratures for corresponding DHS-HS mixtuies Fig. 7).
The latter display only isotropic-to-ferroelectric transitions.
Therefore, the maximum itself can be related to the occur-
rence of demixing without simultaneous polarization. From
he same perspective, the absence of maxima at fihite

ig. 11 suggests that these true Stockmayer mixtures trans-
orm directly into a polarized phase, as do the corresponding

HS mixtures within the MMF theory.

Finally, turning back to the casE=0 (Stockmayer/HS
mixture) it seems worthwhile to briefly compare our MMF
results for the isotropic demixing transition to corresponding
results from the RHNC theory. The latter predicts demixing
to occur already in the absence of any dispersive interactions
(cf. Sec. I A). The effect of adding such interactiotise.,
increasinge;A from zerg on the RHNC stability limits at
p =0.7 is illustrated in Fig. 12. For all positive valuesaﬁg‘A
investigated, concentration fluctuations are found to domi-
nate in the whole range of compositions except in the imme-
diate vicinity of ca,=1,0. Therefore, the maxima in the sta-
bility limits can indeed be related to true demixing
transitions, and the shift of the curves indicates that attractive
forces betweerA particles significantly raise the demixing
temperatures. This is indeed plausible since increasing
implies that the interactions become more and more asym-
metric and, consequently, demixing becomes more and more
supported. A somewhat unexpected phenomenon is the ap-
pearance of a “notch” in the curves@t= 0.55, but this may
be understood such that the tendency for demixing is some-
what less pronounced in mixtures with fairly symmetric
composition(note that we are considering stability limits and
not true coexistence curves where such notches would indi-
cate the appearance of a triple pgirinally, focusing on the
casee,,=0.3 one sees that the RHNC results for the stability

FIG. 11. MMF results for the temperatures related to the boundlimit are, in fact, quite close to the boundary temperatures

ary of the isotropic phase for Stockmayer mixturepat0.7 and
various values* of. The* reduced LJ pairamtfte(rs;b: = £ab03/ mf\)
are chosen ag,,=0.3, egg=0.3T", and e,g=€5,=0.3\I". Dashed
(solid) lines denote second-ord€irst-orde) phase transitions.

resulting from the MMF density-functional theorysee
dashed line in Fig. 12 For these systems, results from the
two approaches are therefore in fair agreement not only
qualitatively, but also from a quantitative point of view.
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IV. CONCLUSIONS trivial effects driven essentially by interpartict®rrelations

In this work we have employed RHNC integral equationsrath?r than by the anisotropic dipolar interaction itself.
and a mean-field-like density functional approach in order to  Finally, we have shown that RHNC and MMF results do
investigate the appearance of demixing transitions in binarf€come consistent again for mixtures where the dipolar in-
fluid mixtures of equisized dipolar spheres, where the twderactions are supplemented by dispersive—spherically
species differ only in the strength of tiipoint) dipole mo- symmetricand attractive interactions. Specifically, consider-
ment. Most of our results have been obtained for DHS sysing a mixture of Stockmayer sphere&) and hard spheres
tems characterized by the absence of any spherically syntB) we have found that the MMF recovers demixing within
metric attractive interactions. Thus, if any, it is the the isotropic phaseas does the RHNCeven if the isotropic
anisotropic dipolar interaction between the particles whichattraction betweeA particles is so small that the pukefluid
can generate demixing transitions. Moreover, since puréloes not display conventional vapor-liquid coexistence. This
DHS fluids tend to order ferroelectrically at sufficiently large sensitivity may indicate that dispersive interactions play a
densities and coupling strengths, a question of special imposimilar important role for demixing transitions in dipolar
tance was whether dense DitSxturescan demix within the ~ mixtures, as they do in the context of vapor-liquid coexist-
isotropic phase. ence of pure dipolar fluids.

In order to solve that question within the RHNC approach
we have applied a stability analysis based on the correlation
functions(i.e., the fluctuationsin the isotropic fluid. Results ACKNOWLEDGMENTS

have been obtained for DHS mixtures at a laret still S.H.L.K. acknowledges financial support from the Deut-

fluidlike) total density(p=0.7) which is in the range where ' Forschungsgemeinschaft through the Emmy-Noether
the pure system spontaneously polarizes at sufficiently lOV\‘-L’rogram

temperatures. The same type of phase behavior is found to
occur in moderately asymmetric DHS mixturése., large

interaction parameterk), indicating that the tendency for APPENDIX: DIELECTRIC CONSTANT OF THE DIPOLAR

ferroelectric ordering in these systems overwhelms any ten-
. L MIXTURE
dency to demix. The main difference to the pure systam
p'=0.7) is then a monotonicshift of the isotropic-to- In this appendix we give a brief derivation of expression

ferroelectric transition temperatures towards smaller valueg.11) for the dielectric constant of the dipolar mixture. We
upon replacing strongly couple8 particles more and more start from the two-component generalization of Kirkwood’s
by weakly coupled particles. This is consistent with a re- formula[33]—that is,
cent low-temperature Monte Carlo stufB2] where the de-
gree of spontaneous polarization in DHS mixtures has been (e-1)(2e+1)
found to be much smaller than in the pure system. The
RHNC fluctuations also indicate the ferroelectric transition
to be accompanied by a change of composition such that th&
polarized phase is richer in the strongly coupled species. 1 [pupp ~
Comparing these findings to MMF results at larfe o= ab——\/—b haﬁ’O(O).
which have been obtained previously by us in Ref], it 3
turns out th{;\t the much simpler MMF density—functional n Eq. (A2), 'Hl%o(o):‘l_ﬂ_fdrrz hl%O(r) and hl%O(r) is the
theory does indeed reproduce the phase behavior on a qua Gipole-di olg aro'ection of the tc?tal Correlatign function be-
tative level, even though the actual ferroelectric transitiont P pO'e proj

temperatures are drastically overestimateaimpared to the weena and b. n a space-flxe_d coo_rdmate system. Using
RHNC results, which are expected to be too high them—Standard rel_atlonssee Appendix 3B in Ref[24]) betyveen
selve$. However, our present results show that even thethe space-ﬂ;ed frfa_Lme and the frame employed in the
qualitative consistency between the two approaches encEe,resent work one finds
when one considers strongly asymmetric DHS mixtures 1 2 \,,§~

characterized by small. For these systems the RHNC gh=5 > <5ab+(— 1)X—bh;é"((0)). (A3)
analysis predicts demixing transitions to occur alreadiin 3 3
the isotropic phaséat intermediate concentratioeg of the
“stronger” component This generalizes previously reported
RHNC results[11,12 on (isotropig demixing in DHS-HS imply
mixtures(I'=0), a phenomenon which has also been detectedﬂn

in recent computer simulationd.0]. Within the MMF ap- VPaPre11 N

proach, on the other hand, the isotropic demixing transition Sap+ (- 1)XThab'X(0) =[(FY) ™ Jabs (A4)

is absent, and the mixtures display only isotropic-to-

ferroelectric transitions even &t=0. Given the severe ap- where the right-hand side involves elements of the inverse of
proximations within the MMF we conclude that demixing the matrices defined in Eq&.10). EquationgA4) allow us
transitions in dipolar mixtures without any dispersive inter-to express theX factors in terms of the direct correlation

actions, as observed in the RHNC, are in fact highly nonfunctions—that is

= 4B papomamy 0f, (A1)
ab
here theg® factors are given by

(A2)

x=-1

We now make use of the exact Ornstein-Zernike relations
[12] for the mixture. For the coefficients of interest these

—_—
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L de(Fo-F;) =0 A8
0h> = 3{(Fo) o+ 2 [(F) g} (A5) elFo=Fy (A8)
and, consequently,

The next transformation involves the prefactors of tig _,_ detFg—Fy)
appearing in Eq(A1). Generalizing corresponding relations ~ de(Z —1) =def(Fo—Fy)(Fy)™]= T el
for one-component dipolar fluidsee Eq(C8) in Ref. [16]] !

one obtains (A9)
4 s It follows now immediately that one of the eigenvaluesZof
T — — [5 _ L . , . L
?ﬂ\*'Panmamb: ~papo o c;éz(o) = [Folan — [F1lab. is identically 1. This property in turn implies
TrZ=dez +1,
(A6)
Trz t=(dez) ™+ 1, (A10)

Combining Egqs(Al), (A5), and(A6) yields the relation
(- D26+ 1) where we have used the fact that the trace and determinant
€- e+l _ o1y are equivalent to the sum and product of the eigenvalues,
€ =2TZ-Tr(z7) -2, (AT) respectively(plus the fact thaZ is a 2X 2 matrix). Inserting
Egs. (A10) into Eq. (A7) and identifying corresponding
where we have introduced the product ma@ixFy(F;)™,  terms on the left- and right-hand sides of the resulting equa-
and “Tr” denotes the trace. In order to proceed towards théion one finally obtains
simpler relation2.11) for € we first show that one of the two

eigenvalues of is identically one The central equation is €=det, (A11)
again Eq.(A6) since it implies the relation which leads immediately to E@2.12).
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